Introduction
The pipeline takes an assembly accession number, as well as the assembly name, and downloads it in a given directory.
It also extracts the repeat-masking performed by the NCBI, and builds a set of common indices (such as samtools faidx
).
One-off downloads
The pipeline accepts command-one line arguments to specify a single genome to download:
--assembly_name
: The name of the assembly,--assembly_accession
: The accession number of the assembly,--outdir
: Where the pipeline runtime information will be stored, and where data will be downloaded (except if absolute paths are given in the samplesheet).
nextflow run sanger-tol/insdcdownload --assembly_accession GCA_927399515.1 --assembly_name gfLaeSulp1.1 --outdir gfLaeSulp1.1_data
This will launch the pipeline and download the gfLaeSulp1.1
assembly (accession GCA_927399515.1
) into the gfLaeSulp1.1_data/
directory,
which will be created if needed.
Bulk download
The pipeline can download multiple assemblies at once, by providing them in a .csv
file through the --input
parameter.
It has to be a comma-separated file with three columns, and a header row as shown in the examples below.
outdir,assembly_name,assembly_accession
darwin/data/fungi/Laetiporus_sulphureus,gfLaeSulp1.1,GCA_927399515.1
darwin/data/mammals/Meles_meles,mMelMel3.2_paternal_haplotype,GCA_922984935.2
Column | Description |
---|---|
outdir |
Base download directory for this species. Evaluated from --outdir if relative. |
assembly_name |
Name of the assembly, as on the NCBI website, e.g. gfLaeSulp1.1 . |
assembly_accession |
Accession number of the assembly to download. Typically of the form GCA_*.* . |
A samplesheet may contain:
- multiple assemblies of the same species
- multiple assemblies in the same output directory
- only one row per assembly
All samplesheet columns correspond exactly to their corresponding command-line parameter,
except outdir
which overrides or complements --oudir
.
An example samplesheet has been provided with the pipeline.
nextflow run sanger-tol/insdcdownload -profile singularity --input /path/to/samplesheet.csv --outdir /path/to/results
Nextflow outputs
Note that the pipeline will create the following files in your working directory:
work # Directory containing the nextflow working files
<OUTDIR> # Finished results in specified location (defined with --outdir)
.nextflow_log # Log file from Nextflow
.nextflow # Directory where Nextflow keeps track of jobs
# Other nextflow hidden files, eg. history of pipeline runs and old logs.
If you wish to repeatedly use the same parameters for multiple runs, rather than specifying each flag in the command, you can specify these in a params file.
Pipeline settings can be provided in a yaml
or json
file via -params-file <file>
.
⚠️ Do not use
-c <file>
to specify parameters as this will result in errors. Custom config files specified with-c
must only be used for tuning process resource specifications, other infrastructural tweaks (such as output directories), or module arguments (args). The above pipeline run specified with a params file in yaml format:
nextflow run sanger-tol/insdcdownload -profile docker -params-file params.yaml
with params.yaml
containing:
assembly: "gfLaeSulp1.1"
assembly_accession: "GCA_927399515.1"
outdir: "./results/"
You can also generate such YAML
/JSON
files via nf-core/launch.
Updating the pipeline
When you run the above command, Nextflow automatically pulls the pipeline code from GitHub and stores it as a cached version. When running the pipeline after this, it will always use the cached version if available - even if the pipeline has been updated since. To make sure that you're running the latest version of the pipeline, make sure that you regularly update the cached version of the pipeline:
nextflow pull sanger-tol/insdcdownload
Reproducibility
It is a good idea to specify a pipeline version when running the pipeline on your data. This ensures that a specific version of the pipeline code and software are used when you run your pipeline. If you keep using the same tag, you'll be running the same version of the pipeline, even if there have been changes to the code since.
First, go to the sanger-tol/insdcdownload releases page and find the latest pipeline version - numeric only (eg. 1.3.1
). Then specify this when running the pipeline with -r
(one hyphen) - eg. -r 1.3.1
. Of course, you can switch to another version by changing the number after the -r
flag.
This version number will be logged in reports when you run the pipeline, so that you'll know what you used when you look back in the future. For example, at the bottom of the MultiQC reports.
To further assist in reproducbility, you can use share and re-use parameter files to repeat pipeline runs with the same settings without having to write out a command with every single parameter.
💡 If you wish to share such profile (such as upload as supplementary material for academic publications), make sure to NOT include cluster specific paths to files, nor institutional specific profiles.
Core Nextflow arguments
NB: These options are part of Nextflow and use a single hyphen (pipeline parameters use a double-hyphen).
-profile
NB: These options are part of Nextflow and use a single hyphen (pipeline parameters use a double-hyphen).
-profile
Use this parameter to choose a configuration profile. Profiles can give configuration presets for different compute environments.
Several generic profiles are bundled with the pipeline which instruct the pipeline to use software packaged using different methods (Docker, Singularity, Podman, Shifter, Charliecloud, Apptainer, Conda) - see below.
We highly recommend the use of Docker or Singularity containers for full pipeline reproducibility, however when this is not possible, Conda is also supported.
The pipeline also dynamically loads configurations from https://github.com/nf-core/configs when it runs, making multiple config profiles for various institutional clusters available at run time. For more information and to see if your system is available in these configs please see the nf-core/configs documentation.
Note that multiple profiles can be loaded, for example: -profile test,docker
- the order of arguments is important!
They are loaded in sequence, so later profiles can overwrite earlier profiles.
If -profile
is not specified, the pipeline will run locally and expect all software to be installed and available on the PATH
. This is not recommended, since it can lead to different results on different machines dependent on the computer enviroment.
docker
- A generic configuration profile to be used with Docker
singularity
- A generic configuration profile to be used with Singularity
podman
- A generic configuration profile to be used with Podman
shifter
- A generic configuration profile to be used with Shifter
charliecloud
- A generic configuration profile to be used with Charliecloud
apptainer
- A generic configuration profile to be used with Apptainer
conda
- A generic configuration profile to be used with Conda. Please only use Conda as a last resort i.e. when it's not possible to run the pipeline with Docker, Singularity, Podman, Shifter, Charliecloud, or Apptainer.
test
- A profile with a minimal configuration for automated testing
- Corresponds to defining the assembly to download as command-line parameters so needs no other parameters
test_full
- A profile with a complete configuration for automated testing
- Corresponds to defining the assembly to download as a CSV file so needs no other parameters
-resume
-resume
Specify this when restarting a pipeline. Nextflow will use cached results from any pipeline steps where the inputs are the same, continuing from where it got to previously. For input to be considered the same, not only the names must be identical but the files' contents as well. For more info about this parameter, see this blog post.
You can also supply a run name to resume a specific run: -resume [run-name]
. Use the nextflow log
command to show previous run names.
-c
-c
Specify the path to a specific config file (this is a core Nextflow command). See the nf-core website documentation for more information.
Custom configuration
Resource requests
Resource requests
Whilst the default requirements set within the pipeline will hopefully work for most people and with most input data, you may find that you want to customise the compute resources that the pipeline requests. Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with any of the error codes specified here it will automatically be resubmitted with higher requests (2 x original, then 3 x original). If it still fails after the third attempt then the pipeline execution is stopped.
To change the resource requests, please see the max resources and tuning workflow resources section of the nf-core website.
Custom Containers
In some cases you may wish to change which container or conda environment a step of the pipeline uses for a particular tool. By default nf-core pipelines use containers and software from the biocontainers or bioconda projects. However in some cases the pipeline specified version maybe out of date.
To use a different container from the default container or conda environment specified in a pipeline, please see the updating tool versions section of the nf-core website.
Custom Tool Arguments
A pipeline might not always support every possible argument or option of a particular tool used in pipeline. Fortunately, nf-core pipelines provide some freedom to users to insert additional parameters that the pipeline does not include by default.
To learn how to provide additional arguments to a particular tool of the pipeline, please see the customising tool arguments section of the nf-core website.
nf-core/configs
In most cases, you will only need to create a custom config as a one-off but if you and others within your organisation are likely to be running nf-core pipelines regularly and need to use the same settings regularly it may be a good idea to request that your custom config file is uploaded to the nf-core/configs
git repository. Before you do this please can you test that the config file works with your pipeline of choice using the -c
parameter. You can then create a pull request to the nf-core/configs
repository with the addition of your config file, associated documentation file (see examples in nf-core/configs/docs
), and amending nfcore_custom.config
to include your custom profile.
See the main Nextflow documentation for more information about creating your own configuration files.
If you have any questions or issues please send us a message on Slack on the #configs
channel.
Azure Resource Requests
To be used with the azurebatch
profile by specifying the -profile azurebatch
.
We recommend providing a compute params.vm_type
of Standard_D16_v3
VMs by default but these options can be changed if required.
Note that the choice of VM size depends on your quota and the overall workload during the analysis. For a thorough list, please refer the Azure Sizes for virtual machines in Azure.
Running in the background
Nextflow handles job submissions and supervises the running jobs. The Nextflow process must run until the pipeline is finished.
The Nextflow -bg
flag launches Nextflow in the background, detached from your terminal so that the workflow does not stop if you log out of your session. The logs are saved to a file.
Alternatively, you can use screen
/ tmux
or similar tool to create a detached session which you can log back into at a later time.
Some HPC setups also allow you to run nextflow within a cluster job submitted your job scheduler (from where it submits more jobs).
Nextflow memory requirements
In some cases, the Nextflow Java virtual machines can start to request a large amount of memory.
We recommend adding the following line to your environment to limit this (typically in ~/.bashrc
or ~./bash_profile
):
NXF_OPTS='-Xms1g -Xmx4g'